Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Mem. Inst. Oswaldo Cruz ; 117: e200501, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1375909

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.

2.
Mem. Inst. Oswaldo Cruz ; 113(9): e180162, 2018. graf
Article in English | LILACS | ID: biblio-1040603

ABSTRACT

Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.


Subject(s)
Humans , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Drug Resistance/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Nitroimidazoles/pharmacology , Trypanosoma cruzi/genetics , Gene Expression , Peptide Initiation Factors/analysis , Peptide Initiation Factors/drug effects , RNA-Binding Proteins/analysis , RNA-Binding Proteins/drug effects
3.
Mem. Inst. Oswaldo Cruz ; 107(3): 377-386, May 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-624020

ABSTRACT

Anti-silencing factor 1 (ASF1) is a histone chaperone that contributes to the histone deposition during nucleosome assembly in newly replicated DNA. It is involved in chromatin disassembly, transcription activation and in the cellular response to DNA damage. In Leishmania major the ASF1 gene (LmASF1) is located in chromosome 20 and codes for a protein showing 67% of identity with the Trypanosoma brucei TbASF1a. Compared to orthologous proteins, LmASF1 conserves the main residues relevant for its various biological functions. To study ASF1 in Leishmania we generated a mutant overexpressing LmASF1 in L. major. We observed that the excess of LmASF1 impaired promastigotes growth rates and had no impact on cell cycle progress. Differently from yeast, ASF1 overproduction in Leishmania did not affect expression levels of genes located on telomeres, but led to an upregulation of proteins involved in chromatin remodelling and physiological stress, such as heat shock proteins, oxidoreductase activity and proteolysis. In addition, we observed that LmASF1 mutant is more susceptible to the DNA damaging agent, methyl methane sulphonate, than the control line. Therefore, our study suggests that ASF1 from Leishmania pertains to the chromatin remodelling machinery of the parasite and acts on its response to DNA damage.


Subject(s)
Animals , Rabbits , Cell Cycle Proteins/genetics , DNA Damage/genetics , Histone Chaperones/physiology , Leishmania major/chemistry , Mutation/genetics , Protozoan Proteins/physiology , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Flow Cytometry , Gas Chromatography-Mass Spectrometry , Histone Chaperones/genetics , Protozoan Proteins/genetics , Real-Time Polymerase Chain Reaction
4.
An. acad. bras. ciênc ; 80(1): 157-166, Mar. 2008. ilus, graf
Article in English | LILACS | ID: lil-477423

ABSTRACT

The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.


A diferenciação de formas epimastigotas (proliferativas) do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas), pode ser reproduzida em laboratório incubando-se as células em um meio quimicamente definido que imita a urina do inseto vetor deste parasita. Os epimastigotas têm um núcleo esférico, o flagelo se projeta da metade do corpo do protozoário e o cinetoplasto (organela que possui o DNA mitocondrial) possui formato de disco. Os tripomastigotas metacíclicos têm um núcleo alongado com o flagelo emergindo da extremidade posterior da célula associado ao cinetoplasto esférico. Neste trabalho descrevemos as mudanças morfológicas que ocorrem durante essa transformação e caracterizamos uma nova forma intermediária do parasita usando reconstrução tridimensional de cortes seriados, visualizados por microscopia eletrônica de transmissão. Essa nova forma intermediária é caracterizada pela compressão do cinetoplasto contra o núcleo alongado, indicando que a metaciclogênese envolve movimentos ativos do cinetoplasto associado à estrutura flagelar em relação ao corpo celular. Como tripomastigotas metacíclicos transcrevem menos que as formas epimastigotas proliferativas, verificamos a presença da RNA polimerase II e medimos a atividade transcricional durante o processo de diferenciação. A presença da enzima e a atividade transcricional permanecem inalteradas durante todas as etapas da metaciclogênese, desaparecendo apenas quando as formas metacíclicas são formadas. Sugerimos que a diferenciação requer uma atividade transcricional, necessária para uma intensa remodelação da célula, que acontece até o cinetoplasto e o flagelo atingirem uma posição posterior do corpo do tripomastigota metacíclico.


Subject(s)
Animals , Trypanosoma cruzi/growth & development , Imaging, Three-Dimensional , Microscopy, Electron , RNA Polymerase II , Transcription, Genetic , Trypanosoma cruzi/cytology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/ultrastructure
5.
An. acad. bras. ciênc ; 78(2): 241-253, June 2006. ilus, tab
Article in English | LILACS | ID: lil-427102

ABSTRACT

Esse artigo descreve realizações do Programa SMolBNet (Rede de Biologia Molecular Estrutural) do Estado de São Paulo, apoiado pela FAPESP (Fundação de Apoio à Pesquisa do Estado de São Paulo). Ele reúne vinte grupos de pesquisa e é coordenado pelos pesquisadores do Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas. O Programa SMolBNet tem como metas: Elucidar a estrutura tridimensional de proteínas de interesse aos grupos de pesquisa componentes do Programa; Prover os grupos com treinamento em todas as etapas de determinação de estrutura: clonagem gênica, expressão de proteínas, purificação de proteínas, cristalização de proteínas e elucidação de suas estruturas. Tendo começado em 2001, o Programa alcançou sucesso em ambas as metas. Neste artigo, quatro dos grupos descrevem suas participações, e discutem aspectos estruturais das proteínas que eles selecionaram para estudos.


Subject(s)
Humans , Computational Biology , Genome/genetics , Molecular Biology , Proteins , Brazil , Crystallography, X-Ray , Computational Biology/organization & administration , Government Agencies/organization & administration , Host-Parasite Interactions , Molecular Biology/instrumentation , Molecular Biology/organization & administration , Nuclear Magnetic Resonance, Biomolecular , Peroxidases/chemistry , Peroxidases/metabolism , Proteins/chemistry , Proteins/genetics , Research , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL